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Online Convex Optimization

Parameters w take values in a convex domain U/
1: fort=1,2,..., T do
2. Learner plays w; € U
3:  Environment reveals convex loss function f; : U — R
4:  Learner incurs loss f;(w;), observes gradient g = Vfi(w;)

5. end for

Measure w.rt. uel:

T

T
Regret} = Z fr(w:) — Z fi(u)
t=1

t=1

Assumptions: diameter(U/) < D, ||gt|l2 < G.



The Standard Picture

Rates based on curvature:

Convex f; | /T | GD with 7, \/AE

Strongly convex f; | InT | GD with n; %

Exp-concave f; | dIn T | ONS with 7; = constant

» [Bartlett, Hazan, and Rakhlin, 2007], [Do et al., 2009]:
Adaptive GD: strongly convex + general convex
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» [Bartlett, Hazan, and Rakhlin, 2007], [Do et al., 2009]:
Adaptive GD: strongly convex + general convex

Our goals:

» Adaptivity to more types of functions f;

» Fast rates for ‘easy’ stochastic data



Other Types of Adaptivity

v

[Orabona, 2014, Orabona and P4l, 2016]:
adapt to size ||ul|2 of comparator

AdaGrad [Duchi et al., 2011]:

box-like domain ({o-ball) instead of ¢»-ball
[Hazan and Kale, 2010], [Chiang et al., 2012]:
linear functions f; that vary little over time

[Orabona, Crammer, and Cesa-Bianchi, 2015]:
data-dependent time-varying regularizers

v

v

v

| S

Key techniques:

» Adaptive tuning of learning rate 7,

» Use second-order information about covariance of features in
time-varying regularizer



MetaGrad: Multiple Eta Gradient Algorithm

Theorem

MetaGrad's Regret’ is bounded by

O(«/V-’,-‘dInT+d|n T)

-
Z(wt —u)Tgr =
t=1 O(VTInInT),

where
.

Vi = Z(u — w;)7g:g] (u — wy).

t=1

> By convexity, fi(we) — fi(u) < (we — u)Tge.



MetaGrad: Multiple Eta Gradient Algorithm

Theorem
MetaGrad's Regret’ is bounded by

T O(«/V-’,-‘dInT-l-dInT)
Z(wt—u)Tgt=

t=1 O(VTInInT),
where
-
Vi = Z(u — w;)7g:g] (u — wy).
t=1

> By convexity, fi(we) — fi(u) < (we — u)Tge.
» Covariance: g:g] < X; X[ when fi(w) = loss( Y¢{(w, X))



MetaGrad: Multiple Eta Gradient Algorithm

Theorem
MetaGrad's Regret’ is bounded by

T O(«/V-’,-‘dInT-l-dInT)
Z(wt —u)Tgr =
t=1

O(WTInInT),
where
-
Vi = Z(u — w;)7g:g] (u — wy).
t=1

> By convexity, fi(we) — fi(u) < (we — u)Tge.

» Covariance: g:g] o< X: X[ when fi(w) = loss(Y:(w, X))

» Optimal learning rate depends on V%, but « unknown!
Solution: aggregate
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Consequences

Non-stochastic adaptation:

Convex f;

Exp-concave f;

Fixed convex f; = f

vVTInlnT
dinT
dinT

strongly convex = exp-concave gives dIn T

Stochastic without curvature [joint work with Griinwald]

Suppose f; i.i.d. with stochastic optimum
u* = argmin,, E¢[f(u)]. Then expected regret E[Regret% |:

Absolute loss* fi(u) = |u — Xi|

Hinge loss* max{0,1 — Y¢(u, X;)}

InT

dinT
(Bd In T)Y/(=8) T(1-5)/(2-8)

*Conditions apply




Outline

Two General Fast Rate Conditions

MetaGrad Algorithm

Exponential Weights Interpretation of Online Learning
Algorithms



1. Directional Derivative Condition

Theorem
If there exist a, b > 0 such that all f; satisfy

fi(u) > fo(w)+a(u—w)TVi(w)+b ((u — w)Vi(w))® forw el,
then O(dIn T) regret w.r.t. u.
a=1

» Satisfied by functions [Hazan, Agarwal, and
Kale, 2007]

» Requires quadratic curvature in direction of minimizer u.

General a

» Satisfied for any function f; = f with minimizer
u, even without any curvature, with a =2 and b = 1/(DG).



2. Bernstein Condition for Online Learning

Suppose f; i.i.d. with stochastic optimum u* = arg minlg,[f(u)].
ueld

E(f(w) — f(u*))? < B(E[f(w)—f(u*)])ﬁ for all w e U.
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2. Bernstein Condition for Online Learning
Suppose f; i.i.d. with stochastic optimum u* = arg minIE,[f(u)].

ueld

E(f(w) — f(u*))? < B(E[f(w)—f(u*)])ﬁ for all w e U.
Replace by

> Apply with f(u) = (u, Vf(w)) instead of f!

» By convexity, f(w) — f(u*) < f(w) — f(u*).
E((w — u")VF(w))? < B(E[(w — u*)Vf(w)] )B for all w e U.
Hinge loss (with G = D = 1): § =1, B = 2=={lX)
Theorem (Koolen, Griinwald, Van Erven, 2016)

E[Regret] = O( (BdIn T)Y/=5) T<1—B)/(2—ﬁ>)

Regret’ = O((Bdln T —In6)/ P T(lfﬁ)/(275)> wp. >1-9¢



Difference in Rates Not Just Theoretical

600 [
N Viratrad
MetaGrad 500
500
400 3 400
5 o
= f=2
EJ’ 300 ® 300
200 200
100 100
0 ° 2 4 6 8 10
2 4 6 8 10 T .
T 4 x 10
x 10 Stochastic Online: fy(u) = |u — X¢|

Offline: fi(u) = |u —1/4| where X = j:% i.i.d. w.p. 0.4 and 0.6.

» MetaGrad: O(In T) regret, AdaGrad: O(v/T), match bounds
» Functions neither strongly convex nor smooth

> comparison more complicated for higher dimensions,
unless we run a separate copy of MetaGrad per dimension, like
the diagonal version of AdaGrad runs GD per dimension
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MetaGrad Algorithm

Second-order for each n of interest (from a grid):
((u) = n(u — we)Tge + 177 (u — wr)geg] (u — wy)

One algorithm per 7 produces w; such that

T T
Zf?(’w?) - ZZ?(U) < ;ILave(n)
t=1 t=1
algorithm produces w; such that
T T
S 0w~ 7w < Ruaster(n) ¥

t=1

Single

Together: - Zz—:l 6?(”) < Rﬂave(n) + Rmaster(n) V?’]

T
RY Rmaster
Z(wt _ U)Tgt < slave(n) 4;7 aste (77) + 77\/7@

t=1
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MetaGrad Algorithm

for each 7 of interest (from a grid):

Second-order
Cl(u) =n(u —w)Tge + 772(U — w;)Tg:g! (u — wy)

algorithm per 7 produces w; such that

One
Zeﬂ wt Zgn = slave( )
Single algorithm produces w; such that
T T
Zﬁ(wt) - Zﬁ(w?) < Rmaster(7) v
t=1 - t=1
Vn

< R;]Lave( ) + Rmaster(n)

Together: — S, 07(u)
T
O )+ O( ) /
—a)T L 3
Z(wt u)Tg: < . +nV¥ =0 ( Vidin T)




MetaGrad Master

Goal: aggregate slave predictions wy for all 7 in

-0 91 2[5 logx T
5DG’>5DG’ " 5DG
Difficulty: master's predictions must be good w.r.t. different

loss functions 7 for all 7 simultaneously

exponentially spaced grid 2

Compute exponential weights with performance of each 7
measured by its own surrogate loss:

7-‘-1(77)e_ Zs<t Z?(wl’)
V4

me(n) =

Then predict with exponentially weighted average:

W — an(n) wy
X, mm)



MetaGrad Master Analysis

Potential (DT = Z 71'1(77)6_ Zz—:l ﬁ?(w:’)
n

Proof outline:
Sr <P ;<< Pp=1

T T
Y (we) = e (w]) < —In m(n)
t=1 t=1

=0



MetaGrad Master Analysis

Potential (DT = Z 71'1(77)6_ Zz—:l E?(w:’)
n

Proof outline:
Pr <Py 1< <Pp=1

m(n)e” LA <1 vy

T T
> (we) = el (wy) < —ln m(n)
t=1 t=1

=0

Grid has [% log, T| + 1 learning rates, so for heavy-tailed prior:

—Inm(n) = O( )



MetaGrad Master Analysis: Decreasing Potential

Surrogate loss £](u) = n(u — w)Tg: + n°(u — w:)Tgeg] (u — wy)
is , even if f; is not.

Upper bound by tangent at u = wy:

et (w) <1+ n(we —u)Tge



MetaGrad Master Analysis: Decreasing Potential

Surrogate loss £](u) = n(u — w)Tg: + n°(u — w:)Tgeg] (u — wy)
is , even if f; is not.

Upper bound by tangent at u = wy:

e W <14 p(w, — u)Tg:
Choose master’s weights to ensure decreasing potential:
Oy —dr_p =Y my(n)e” Teer H ) (eff”r(w% _ 1)

n
< S mn)e Seer AN — wl)Tgy
n

=0 for any g1



MetaGrad Slave

Goal: Given 7, minimize regret w.r.t. exp-concave surrogate £}.
Update:
t+1 = wy —ns; Zt+1gt7

where

—1

1

= (D2I + 21 nggs> st = 1+ 2ng{(w{ — w)
s=1

Project onto domain:

w?ﬂ = argerzl{in (u— w?ﬂ)T(z?ﬂ)_l(“ wt+1)



MetaGrad Slave

Goal: Given 7, minimize regret w.r.t. exp-concave surrogate £}.
Update:
+1 = wt UET Z?+1gt»

where

-1

1

= (D2I+ 277229595> st = 1+ 2ng{(w{ — w)
s=1

Project onto domain:

w?ﬂ = argerzl{in (u— w?ﬂ)T(z?ﬂ)_l(“ wt+1)

» If master = slave, i.e. wy = wy, then is



MetaGrad Slave as Continuous Exponential Weights

Exponential Weights

» Continuous set of experts u € RY
» Gaussian prior P; = N(0, D%I)

e~ dP,(u)

dPry1(u) = > (update)
Piy1 = min_ KL(P|Pei1) (project)
P: upeU
Play the mean of exponential weights:
'E)l’ = N(wﬂzn)
'Dt = N(whzn)
» Can understand and many other

algorithms this way



MetaGrad Slave Analysis
Standard exponential weights analysis gives
for all Q:

T T
KL(@IIP) 23— Bl 0] = B[ ()]
t=1

T

Ze” pe) = > Bl (u)
t=1

exp— conc
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MetaGrad Slave Analysis
Standard exponential weights analysis gives
for all Q:

T T
KL(@IIP) 23— Bl 0] = B[ ()]
t=1

T

Zf” ne) = S EIC(w)
t=1

Specialize to Q = N (u*, DQZ) -

exp— conc

spallw P+ 5 (~ndet(Z) + tr(%) — d)
T

.
> (pp,) - Zf?(U*) =) _*D*tr(Lg:g7)
t=1 t=1

t=1

shve(1) < gpzllu’]| + 3 Indet <I+2n2D2Zg 9t> = O0(dInT)
t=1
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Many Algorithms as Exponential Weights
Exponentiated Gradient [Kivinen and Warmuth, 1997]

» Continuous set of experts u € RY with loss £;(u) = (u, g;)

» Prior P; puts point masses on corners of probability simplex

— Et(u)
e dPt(u) E [u] — Pt+1 = EG

dP =
t+1(U) V4 Pii1
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Many Algorithms as Exponential Weights
Exponentiated Gradient [Kivinen and Warmuth, 1997]

» Continuous set of experts u € RY with loss £;(u) = (u, g;)

» Prior P; puts point masses on corners of probability simplex

e (WAP,(u
Zt() PE[u] Pii1 = EG

dPii1(u) =
Gradient Descent
Gaussian prior P = N(0,I) = Piy1(u nth,
Mirror Descent [Van der Hoeven, 2016]

» Generalize to arbitrary prior P;

> &(0) = In [ e dPy(u):
CGF for exponential family with carrier Py

pp,,, = VO(VO* (up,) — ng:) Dirk

update in natural parameters




Summary and Last Remarks

MetaGrad
» O(VT) regret
> (often O(dIn T)) for:

» Adversarial: exp-concave, strongly convex, fixed functions
» Stochastic: under Bernstein condition (including for hinge loss)
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MetaGrad Algorithm

» Master:

» Pays only O(Inln T) for learning the 1 that is empirically
optimal on the data
» Almost exponential weights for surrogate loss, but need to

> Slave:
» Continuous exponential weights on surrogate loss
» Matrix updates take O(d?) work, projections often O(d?)
» Open problem: add sketching like [Luo et al., 2016]?



Summary and Last Remarks

MetaGrad
» O(VT) regret
> (often O(dIn T)) for:

» Adversarial: exp-concave, strongly convex, fixed functions
» Stochastic: under Bernstein condition (including for hinge loss)

MetaGrad Algorithm

» Master:

» Pays only O(Inln T) for learning the 1 that is empirically
optimal on the data
» Almost exponential weights for surrogate loss, but need to

> Slave:
» Continuous exponential weights on surrogate loss
» Matrix updates take O(d?) work, projections often O(d?)
» Open problem: add sketching like [Luo et al., 2016]?
Cool Aside: View many online algorithms as continuous
exponential weights
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