Leiden Lorentz Workshop, November 9, 2016

MetaGrad: Multiple Learning Rates in
Online Learning

Tim van Erven Wouter Koolen

Universiteit
k4] Leiden
Centrum Wiskunde & Informatica

Online Convex Optimization

Parameters w take values in a convex domain U/
1: fort=1,2,..., T do
2. Learner plays w; € U
3: Environment reveals convex loss function f; : U — R
4: Learner incurs loss f;(w;), observes gradient g = Vfi(w;)

5. end for

Measure w.rt. uel:

T

T
Regret} = Z fr(w:) — Z fi(u)
t=1

t=1

Assumptions: diameter(U/) < D, ||gt|l2 < G.

The Standard Picture

Rates based on curvature:

Convex f; | /T | GD with 7, \/AE

Strongly convex f; | InT | GD with n; %

Exp-concave f; | dIn T | ONS with 7; = constant

» [Bartlett, Hazan, and Rakhlin, 2007], [Do et al., 2009]:
Adaptive GD: strongly convex + general convex

The Standard Picture

Rates based on curvature:

Convex f; | /T | GD with 7, \/AE

Strongly convex f; | InT | GD with n; %

Exp-concave f; | dIn T | ONS with 7; = constant

» [Bartlett, Hazan, and Rakhlin, 2007], [Do et al., 2009]:
Adaptive GD: strongly convex + general convex

Our goals:

» Adaptivity to more types of functions f;

» Fast rates for ‘easy’ stochastic data

Other Types of Adaptivity

v

[Orabona, 2014, Orabona and P4l, 2016]:
adapt to size ||ul|2 of comparator

AdaGrad [Duchi et al., 2011]:

box-like domain ({o-ball) instead of ¢»-ball
[Hazan and Kale, 2010], [Chiang et al., 2012]:
linear functions f; that vary little over time

[Orabona, Crammer, and Cesa-Bianchi, 2015]:
data-dependent time-varying regularizers

v

v

v

| S

Key techniques:

» Adaptive tuning of learning rate 7,

» Use second-order information about covariance of features in
time-varying regularizer

MetaGrad: Multiple Eta Gradient Algorithm

Theorem

MetaGrad's Regret’ is bounded by

O(«/V-’,-‘dInT+d|n T)

-
Z(wt —u)Tgr =
t=1 O(VTInInT),

where
.

Vi = Z(u — w;)7g:g] (u — wy).

t=1

> By convexity, fi(we) — fi(u) < (we — u)Tge.

MetaGrad: Multiple Eta Gradient Algorithm

Theorem
MetaGrad's Regret’ is bounded by

T O(«/V-’,-‘dInT-l-dInT)
Z(wt—u)Tgt=

t=1 O(VTInInT),
where
-
Vi = Z(u — w;)7g:g] (u — wy).
t=1

> By convexity, fi(we) — fi(u) < (we — u)Tge.
» Covariance: g:g] < X; X[when fi(w) = loss(Y¢{(w, X))

MetaGrad: Multiple Eta Gradient Algorithm

Theorem
MetaGrad's Regret’ is bounded by

T O(«/V-’,-‘dInT-l-dInT)
Z(wt —u)Tgr =
t=1

O(WTInInT),
where
-
Vi = Z(u — w;)7g:g] (u — wy).
t=1

> By convexity, fi(we) — fi(u) < (we — u)Tge.

» Covariance: g:g] o< X: X[when fi(w) = loss(Y:(w, X))

» Optimal learning rate depends on V%, but « unknown!
Solution: aggregate

Consequences

Non-stochastic adaptation:

Convex fz | VT InInT

Exp-concave f; dinT

Fixed convex f; = f dinT

Consequences

Non-stochastic adaptation:

Convex fz | VT InInT

Exp-concave f; dinT

Fixed convex f; = f dinT

strongly convex = exp-concave gives dIn T

Consequences

Non-stochastic adaptation:

Convex f;

Exp-concave f;

Fixed convex f; = f

vVTInlnT
dinT
dinT

strongly convex = exp-concave gives dIn T

Stochastic without curvature [joint work with Griinwald]

Suppose f; i.i.d. with stochastic optimum
u* = argmin,, E¢[f(u)]. Then expected regret E[Regret% |:

Absolute loss* fi(u) = |u — Xi|

Hinge loss* max{0,1 — Y¢(u, X;)}

InT

dinT
(Bd In T)Y/(=8) T(1-5)/(2-8)

*Conditions apply

Outline

Two General Fast Rate Conditions

MetaGrad Algorithm

Exponential Weights Interpretation of Online Learning
Algorithms

1. Directional Derivative Condition

Theorem
If there exist a, b > 0 such that all f; satisfy

fi(u) > fo(w)+a(u—w)TVi(w)+b ((u — w)Vi(w))® forw el,
then O(dIn T) regret w.r.t. u.
a=1

» Satisfied by functions [Hazan, Agarwal, and
Kale, 2007]

» Requires quadratic curvature in direction of minimizer u.

General a

» Satisfied for any function f; = f with minimizer
u, even without any curvature, with a =2 and b = 1/(DG).

2. Bernstein Condition for Online Learning

Suppose f; i.i.d. with stochastic optimum u* = arg minlg,[f(u)].
ueld

E(f(w) — f(u*))? < B(E[f(w)—f(u*)])ﬁ for all w e U.

2. Bernstein Condition for Online Learning

Suppose f; i.i.d. with stochastic optimum u* = arg minIE,[f(u)].
ueld

E(f(w) — f(u*))? < B(E[f(w) — f(u*)])ﬁ for all w e U.

Replace by
> Apply with f(u) = (u, Vf(w)) instead of f!
» By convexity, f(w) — f(u*) < f(w) — f(u*).

E((w — u")VF(w))? < B(E[(w — u*)Vf(w)])B for all w e U.

2. Bernstein Condition for Online Learning
Suppose f; i.i.d. with stochastic optimum u* = arg minIE,[f(u)].

ueld
E(f(w) — f(u*))? < B(E[f(w)—f(u*)])ﬁ for all w e U.

Replace by
> Apply with f(u) = (u, Vf(w)) instead of f!
» By convexity, f(w) — f(u*) < f(w) — f(u*).

E((w — u")VF(w))? < B(E[(w — u*)Vf(w)])B for all w e U.

| e o 2Ame(EXXT])
Hinge loss (with G = D =1): 8 =1, B = =555,

2. Bernstein Condition for Online Learning
Suppose f; i.i.d. with stochastic optimum u* = arg minIE,[f(u)].

ueld

E(f(w) — f(u*))? < B(E[f(w)—f(u*)])ﬁ for all w e U.
Replace by

> Apply with f(u) = (u, Vf(w)) instead of f!

» By convexity, f(w) — f(u*) < f(w) — f(u*).
E((w — u")VF(w))? < B(E[(w — u*)Vf(w)])B for all w e U.
Hinge loss (with G = D = 1): § =1, B = 2=={lX)
Theorem (Koolen, Griinwald, Van Erven, 2016)

E[Regret] = O((BdIn T)Y/=5) T<1—B)/(2—ﬁ>)

Regret’ = O((Bdln T —In6)/ P T(lfﬁ)/(275)> wp. >1-9¢

Difference in Rates Not Just Theoretical

600 [
N Viratrad
MetaGrad 500
500
400 3 400
5 o
= f=2
EJ’ 300 ® 300
200 200
100 100
0 ° 2 4 6 8 10
2 4 6 8 10 T .
T 4 x 10
x 10 Stochastic Online: fy(u) = |u — X¢|

Offline: fi(u) = |u —1/4| where X = j:% i.i.d. w.p. 0.4 and 0.6.

» MetaGrad: O(In T) regret, AdaGrad: O(v/T), match bounds
» Functions neither strongly convex nor smooth

> comparison more complicated for higher dimensions,
unless we run a separate copy of MetaGrad per dimension, like
the diagonal version of AdaGrad runs GD per dimension

Outline

Two General Fast Rate Conditions

MetaGrad Algorithm

Exponential Weights Interpretation of Online Learning
Algorithms

MetaGrad Algorithm
Second-order for each n of interest (from a grid):

() = n(u — we)Tge + n*(u — we) geg] (u — we)

MetaGrad Algorithm
Second-order for each n of interest (from a grid):
Cl(u) = n(u — we)Tge + 0 (u — we)"geg! (u — wy)

One algorithm per 7 produces w; such that

T

D (wd) =Y Cl(u) < Rifye(n)

t=1 t=1

MetaGrad Algorithm

Second-order for each n of interest (from a grid):
0l (w) = n(u — we)Tge + 17 (u — we)Tgegd (u — we)
One algorithm per 7 produces w; such that
T
D (wy) =Y Ll (u) < Riye(n)
t=1 t=1

Single algorithm produces w; such that

-
Z f?('wt) _ Z f?(w?) < Rmaster(n) v

t=1 t=1

MetaGrad Algorithm
Second-order for each n of interest (from a grid):

Cl(u) = n(u —we)Tge + 772(U — w;)"g:g! (u — wy)

One algorithm per 7 produces w; such that
T
D (wy) =Y Ll (u) < Riye(n)
t=1 t=1
Single algorithm produces w; such that
T T
Zﬁ('wt) - Zf?(w?) < Rmaster(1) v
=1 =1
t 0 t

Together: — thl Cl(u) < RY. (1) + Rmaster(n) V1

MetaGrad Algorithm

Second-order for each n of interest (from a grid):
((u) = n(u — we)Tge + 177 (u — wr)geg] (u — wy)

One algorithm per 7 produces w; such that

T T
Zf?(’w?) - ZZ?(U) < ;ILave(n)
t=1 t=1
algorithm produces w; such that
T T
S 0w~ 7w < Ruaster(n) ¥

t=1

Single

Together: - Zz—:l 6?(”) < Rﬂave(n) + Rmaster(n) V?’]

T
RY Rmaster
Z(wt _ U)Tgt < slave(n) 4;7 aste (77) + 77\/7@

t=1

MetaGrad Algorithm

Second-order for each n of interest (from a grid):
Cl(u) = n(u — we)Tg: + 0 (u — we)"geg! (u — wy)

One algorithm per 7 produces w; such that

Zeﬂ wt Zgn = slave()

Single algorithm produces w; such that

T

Zﬁ(wt) - Zﬁ(w?) < Rmaster(7) v
t=1 t=1

Together: — S, 1(u) < R ve(n) + Rmaster(n) V1

-
Z(wt —u)’g: < ol) —; o) +n V7

MetaGrad Algorithm

for each 7 of interest (from a grid):

Second-order
Cl(u) =n(u —w)Tge + 772(U — w;)Tg:g! (u — wy)

algorithm per 7 produces w; such that

One
Zeﬂ wt Zgn = slave()
Single algorithm produces w; such that
T T
Zﬁ(wt) - Zﬁ(w?) < Rmaster(7) v
t=1 - t=1
Vn

< R;]Lave() + Rmaster(n)

Together: — S, 07(u)
T
O)+ O() /
—a)T L 3
Z(wt u)Tg: < . +nV¥ =0 (Vidin T)

MetaGrad Master

Goal: aggregate slave predictions wy for all 7 in

-0 91 2[5 logx T
5DG’>5DG’ " 5DG
Difficulty: master's predictions must be good w.r.t. different

loss functions 7 for all 7 simultaneously

exponentially spaced grid 2

Compute exponential weights with performance of each 7
measured by its own surrogate loss:

7-‘-1(77)e_ Zs<t Z?(wl’)
V4

me(n) =

Then predict with exponentially weighted average:

W — an(n) wy
X, mm)

MetaGrad Master Analysis

Potential (DT = Z 71'1(77)6_ Zz—:l ﬁ?(w:’)
n

Proof outline:
Sr <P ;<< Pp=1

T T
Y (we) = e (w]) < —In m(n)
t=1 t=1

=0

MetaGrad Master Analysis

Potential (DT = Z 71'1(77)6_ Zz—:l E?(w:’)
n

Proof outline:
Pr <Py 1< <Pp=1

m(n)e” LA <1 vy

T T
> (we) = el (wy) < —ln m(n)
t=1 t=1

=0

Grid has [% log, T| + 1 learning rates, so for heavy-tailed prior:

—Inm(n) = O()

MetaGrad Master Analysis: Decreasing Potential

Surrogate loss £](u) = n(u — w)Tg: + n°(u — w:)Tgeg] (u — wy)
is , even if f; is not.

Upper bound by tangent at u = wy:

et (w) <1+ n(we —u)Tge

MetaGrad Master Analysis: Decreasing Potential

Surrogate loss £](u) = n(u — w)Tg: + n°(u — w:)Tgeg] (u — wy)
is , even if f; is not.

Upper bound by tangent at u = wy:

e W <14 p(w, — u)Tg:
Choose master’s weights to ensure decreasing potential:
Oy —dr_p =Y my(n)e” Teer H) (eff”r(w% _ 1)

n
< S mn)e Seer AN — wl)Tgy
n

=0 for any g1

MetaGrad Slave

Goal: Given 7, minimize regret w.r.t. exp-concave surrogate £}.
Update:
t+1 = wy —ns; Zt+1gt7

where

—1

1

= (D2I + 21 nggs> st = 1+ 2ng{(w{ — w)
s=1

Project onto domain:

w?ﬂ = argerzl{in (u— w?ﬂ)T(z?ﬂ)_l(“ wt+1)

MetaGrad Slave

Goal: Given 7, minimize regret w.r.t. exp-concave surrogate £}.
Update:
+1 = wt UET Z?+1gt»

where

-1

1

= (D2I+ 277229595> st = 1+ 2ng{(w{ — w)
s=1

Project onto domain:

w?ﬂ = argerzl{in (u— w?ﬂ)T(z?ﬂ)_l(“ wt+1)

» If master = slave, i.e. wy = wy, then is

MetaGrad Slave as Continuous Exponential Weights

Exponential Weights

» Continuous set of experts u € RY
» Gaussian prior P; = N(0, D%I)

e~ dP,(u)

dPry1(u) = > (update)
Piy1 = min_ KL(P|Pei1) (project)
P: upeU
Play the mean of exponential weights:
'E)l’ = N(wﬂzn)
'Dt = N(whzn)
» Can understand and many other

algorithms this way

MetaGrad Slave Analysis
Standard exponential weights analysis gives
for all Q:

T T
KL(@IIP) 23— Bl 0] = B[()]
t=1

T

Ze” pe) = > Bl (u)
t=1

exp— conc

MetaGrad Slave Analysis
Standard exponential weights analysis gives
for all Q:

T T
KL(@IIP) 23— Bl 0] = B[()]
t=1

T

Zf” ne) = S EIC(w)
t=1

Specialize to Q = N (u*, DQZ) -

exp— conc

1
ﬁu |12 + (Indet(X) + tr(X) — d)

T T
> (pp,) - Zf?(U*) =) _*D*tr(Lg:g7)
t=1 t=1

t=1

MetaGrad Slave Analysis
Standard exponential weights analysis gives
for all Q:

T T
KL(@IIP) 23— Bl 0] = B[()]
t=1

T

Zf” ne) = S EIC(w)
t=1

Specialize to Q = N (u*, DQZ) -

exp— conc

spallw P+ 5 (~ndet(Z) + tr(%) — d)
T

.
> (pp,) - Zf?(U*) =) _*D*tr(Lg:g7)
t=1 t=1

t=1

shve(1) < gpzllu’]| + 3 Indet <I+2n2D2Zg 9t> = O0(dInT)
t=1

Outline

Two General Fast Rate Conditions

MetaGrad Algorithm

Exponential Weights Interpretation of Online Learning
Algorithms

Many Algorithms as Exponential Weights
Exponentiated Gradient [Kivinen and Warmuth, 1997]

» Continuous set of experts u € RY with loss £;(u) = (u, g;)

» Prior P; puts point masses on corners of probability simplex

— Et(u)
e dPt(u) E [u] — Pt+1 = EG

dP =
t+1(U) V4 Pii1

Many Algorithms as Exponential Weights
Exponentiated Gradient [Kivinen and Warmuth, 1997]

» Continuous set of experts u € RY with loss £;(u) = (u, g;)

» Prior P; puts point masses on corners of probability simplex

— Kt(u)
e " dP(u) E [u] = Pry1 = EG

dP =
t+1(U) V4 Pii1

Gradient Descent

Gaussian prior P = N(0,I) = Piy1(u nzgt,

Many Algorithms as Exponential Weights
Exponentiated Gradient [Kivinen and Warmuth, 1997]

» Continuous set of experts u € RY with loss £;(u) = (u, g;)

» Prior P; puts point masses on corners of probability simplex

e (WAP,(u
Zt() PE[u] Pii1 = EG

dPii1(u) =
Gradient Descent
Gaussian prior P = N(0,I) = Piy1(u nth,
Mirror Descent [Van der Hoeven, 2016]

» Generalize to arbitrary prior P;

> &(0) = In [e dPy(u):
CGF for exponential family with carrier Py

pp,,, = VO(VO* (up,) — ng:) Dirk

update in natural parameters

Summary and Last Remarks

MetaGrad
» O(VT) regret
> (often O(dIn T)) for:

» Adversarial: exp-concave, strongly convex, fixed functions
» Stochastic: under Bernstein condition (including for hinge loss)

Summary and Last Remarks

MetaGrad
» O(VT) regret
> (often O(dIn T)) for:

» Adversarial: exp-concave, strongly convex, fixed functions
» Stochastic: under Bernstein condition (including for hinge loss)

MetaGrad Algorithm

» Master:

» Pays only O(Inln T) for learning the 1 that is empirically
optimal on the data
» Almost exponential weights for surrogate loss, but need to

> Slave:
» Continuous exponential weights on surrogate loss
» Matrix updates take O(d?) work, projections often O(d?)
» Open problem: add sketching like [Luo et al., 2016]?

Summary and Last Remarks

MetaGrad
» O(VT) regret
> (often O(dIn T)) for:

» Adversarial: exp-concave, strongly convex, fixed functions
» Stochastic: under Bernstein condition (including for hinge loss)

MetaGrad Algorithm

» Master:

» Pays only O(Inln T) for learning the 1 that is empirically
optimal on the data
» Almost exponential weights for surrogate loss, but need to

> Slave:
» Continuous exponential weights on surrogate loss
» Matrix updates take O(d?) work, projections often O(d?)
» Open problem: add sketching like [Luo et al., 2016]?
Cool Aside: View many online algorithms as continuous
exponential weights

References

P. L. Bartlett, E. Hazan, and A. Rakhlin. Adaptive online gradient descent. In NIPS 20, pages 65-72, 2007.

C.-K. Chiang, T. Yang, C.-J. Le, M. Mahdavi, C.-J. Lu, R. Jin, and S. Zhu. Online optimization with gradual
variations. In Proc. of the 25th Annual Conf. on Learning Theory (COLT), pages 6.1-6.20, 2012.

C. B. Do, Q. V. Le, and C.-S. Foo. Proximal regularization for online and batch learning. In Proc. of the 26th
Annual International Conf. on Machine Learning (ICML), pages 257-264, 2009.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12:2121-2159, 2011.

E. Hazan and S. Kale. Extracting certainty from uncertainty: Regret bounded by variation in costs. Machine
learning, 80(2-3):165-188, 2010.

E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex optimization. Machine
Learning, 69(2-3):169-192, 2007.

J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors. Information
and Computation, 132(1):1-63, 1997.

W. M. Koolen, P. Griinwald, and T. van Erven. Combining adversarial guarantees and stochastic fast rates in
online learning. NIPS, 2016.

H. Luo, A. Agarwal, N. Cesa-Bianchi, and J. Langford. Efficient second order online learning by sketching. In NIPS
29, 2016.

F. Orabona. Simultaneous model selection and optimization through parameter-free stochastic learning. In NIPS
27, pages 1116-1124, 2014.

F. Orabona and D. Pal. Coin betting and parameter-free online learning. In NIPS 29, 2016.

F. Orabona, K. Crammer, and N. Cesa-Bianchi. A generalized online mirror descent with applications to
classification and regression. Machine Learning, 99(3):411-435, 2015.

D. van der Hoeven. Is mirror descent a special case of exponential weights? Master's thesis, Leiden University,
2016. Available from https://www.math.leidenuniv.nl/en/theses/year/2016/.

T. van Erven and W. M. Koolen. Metagrad: Multiple learning rates in online learning. NIPS, 2016.

https://www.math.leidenuniv.nl/en/theses/year/2016/

	Two General Fast Rate Conditions
	MetaGrad Algorithm
	Exponential Weights Interpretation of Online Learning Algorithms

