MetaGrad: Multiple Learning Rates in Online Learning

Tim van Erven

Wouter Koolen

Online Convex Optimization

Parameters w take values in a convex domain $\mathcal U$

- 1: **for** t = 1, 2, ..., T **do**
- 2: Learner plays $oldsymbol{w}_t \in \mathcal{U}$
- 3: Environment reveals convex loss function $f_t: \mathcal{U} \to \mathbb{R}$
- 4: Learner incurs loss $f_t(w_t)$, observes gradient $g_t = \nabla f_t(w_t)$
- 5: end for

Measure **regret** w.r.t. $u \in \mathcal{U}$:

$$\mathsf{Regret}_T^u = \sum_{t=1}^T f_t(w_t) - \sum_{t=1}^T f_t(u)$$

Assumptions: diameter(\mathcal{U}) $\leq D$, $||g_t||_2 \leq G$.

The Standard Picture

Rates based on curvature:

Convex f_t	\sqrt{T}	GD with $\eta_t \propto rac{1}{\sqrt{t}}$
Strongly convex f_t	In T	GD with $\eta_t \propto rac{1}{t}$
Exp-concave f_t	d In T	ONS with $\eta_t = {\sf constant}$

► [Bartlett, Hazan, and Rakhlin, 2007], [Do et al., 2009]: Adaptive GD: strongly convex + general convex

The Standard Picture

Rates based on curvature:

Convex f_t	\sqrt{T}	GD with $\eta_t \propto rac{1}{\sqrt{t}}$
Strongly convex f_t	In T	GD with $\eta_t \propto rac{1}{t}$
Exp-concave f_t	d In T	ONS with $\eta_t = {\sf constant}$

► [Bartlett, Hazan, and Rakhlin, 2007], [Do et al., 2009]: Adaptive GD: strongly convex + general convex

Our goals:

- Adaptivity to more types of functions f_t
- ► Fast rates without curvature for 'easy' stochastic data

Other Types of Adaptivity

- ▶ [Orabona, 2014, Orabona and Pál, 2016]: adapt to size $||u||_2$ of comparator
- ▶ AdaGrad [Duchi et al., 2011]: box-like domain (ℓ_{∞} -ball) instead of ℓ_2 -ball
- ▶ [Hazan and Kale, 2010], [Chiang et al., 2012]: linear functions f_t that vary little over time
- ► [Orabona, Crammer, and Cesa-Bianchi, 2015]: data-dependent time-varying regularizers
-

Key techniques:

- ▶ Adaptive tuning of learning rate η_t
- Use second-order information about covariance of features in time-varying regularizer

MetaGrad: Multiple Eta Gradient Algorithm

Theorem

MetaGrad's Regret $_{\tau}^{u}$ is bounded by

$$\sum_{t=1}^{T} (w_t - u)^{\mathsf{T}} g_t = egin{cases} O\left(\sqrt{V_T^u d \ln T} + d \ln T
ight) \ O(\sqrt{T \ln \ln T}), \end{cases}$$

where

$$V_T^u = \sum_{t=1}^T (u-w_t)^\intercal g_t g_t^\intercal (u-w_t).$$

▶ By convexity, $f_t(w_t) - f_t(u) \le (w_t - u)^{\mathsf{T}} g_t$.

MetaGrad: Multiple Eta Gradient Algorithm

Theorem

MetaGrad's Regret $_T^u$ is bounded by

$$\sum_{t=1}^{T} (w_t - u)^{\intercal} g_t = egin{cases} O\left(\sqrt{V_T^u d \ln T} + d \ln T
ight) \ O(\sqrt{T \ln \ln T}), \end{cases}$$

where

$$V_{T}^{oldsymbol{u}} = \sum_{t=1}^{T} (u-w_t)^{\intercal} oldsymbol{g}_t oldsymbol{g}_t^{\intercal} (u-w_t).$$

- lacksquare By convexity, $f_t(w_t) f_t(u) \leq (w_t u)^\intercal g_t$.
- lacktriangle Covariance: $g_tg_t^\intercal \propto X_tX_t^\intercal$ when $f_t(w) = \mathsf{loss}(Y_t\langle w, X_t
 angle)$

MetaGrad: Multiple Eta Gradient Algorithm

Theorem

MetaGrad's Regret $_T^u$ is bounded by

$$\sum_{t=1}^{T} (w_t - u)^{\mathsf{T}} g_t = egin{cases} O\left(\sqrt{V_T^u d \ln T} + d \ln T
ight) \ O(\sqrt{T \ln \ln T}), \end{cases}$$

where

$$V_T^u = \sum_{t=1}^T (u-w_t)^\intercal g_t g_t^\intercal (u-w_t).$$

- lacksquare By convexity, $f_t(w_t) f_t(u) \leq (w_t u)^{\intercal} g_t$.
- lacktriangle Covariance: $g_tg_t^\intercal \propto X_tX_t^\intercal$ when $f_t(w) = \mathsf{loss}(Y_t\langle w, X_t\rangle)$
- ▶ Optimal learning rate depends on V_T^u , but u unknown! Solution: aggregate multiple learning rates.

Consequences

Non-stochastic adaptation:

Convex f_t	$\sqrt{T \ln \ln T}$
Exp-concave f_t	d In T
Fixed convex $f_t = f$	d In T

Consequences

Non-stochastic adaptation:

Convex f_t	$\sqrt{T \ln \ln T}$
Exp-concave f_t	d In T
Fixed convex $f_t = f$	d In T

Loose end: strongly convex \Rightarrow exp-concave gives $d \ln T$

Consequences

Non-stochastic adaptation:

Convex
$$f_t$$
 $\sqrt{T \ln \ln T}$

Exp-concave f_t $d \ln T$

Fixed convex $f_t = f$ $d \ln T$

Loose end: strongly convex \Rightarrow exp-concave gives $\frac{d}{d} \ln T$

Stochastic without curvature [joint work with Grünwald]

Suppose f_t i.i.d. with stochastic optimum $u^* = \arg\min_{u \in \mathcal{U}} \mathbb{E}_f[f(u)]$. Then expected regret $\mathbb{E}[\mathsf{Regret}_T^{u^*}]$:

Absolute loss* $f_t(u) = u - X_t $	In T
Hinge loss* max $\{0, 1 - Y_t \langle oldsymbol{u}, oldsymbol{X}_t angle\}$	d In T
(B,β) -Bernstein	$(Bd \ln T)^{1/(2-\beta)} T^{(1-\beta)/(2-\beta)}$

Outline

Two General Fast Rate Conditions

MetaGrad Algorithm

Exponential Weights Interpretation of Online Learning Algorithms

1. Directional Derivative Condition

Theorem

If there exist a, b > 0 such that all f_t satisfy

$$f_t(u) \geq f_t(w) + a(u-w)^\intercal \nabla f_t(w) + b\left((u-w)^\intercal \nabla f_t(w)\right)^2$$
 for $w \in \mathcal{U}$, then $O(d \ln T)$ regret w.r.t. u .

a = 1

- Satisfied by exp-concave functions [Hazan, Agarwal, and Kale, 2007]
- ightharpoonup Requires quadratic curvature in direction of minimizer u.

General a

Satisfied for any fixed convex function $f_t = f$ with minimizer u, even without any curvature, with a = 2 and b = 1/(DG).

Suppose f_t i.i.d. with stochastic optimum $u^* = \arg\min_{u \in \mathcal{U}} \mathop{\mathbb{E}}_f[f(u)]$.

Standard Bernstein condition:

$$\mathbb{E}(f(w) - f(u^*))^2 \le B(\mathbb{E}[f(w) - f(u^*)])^{\beta}$$
 for all $w \in \mathcal{U}$.

Suppose f_t i.i.d. with stochastic optimum $u^* = \arg\min_{u \in \mathcal{U}} \mathbb{E}[f(u)]$.

Standard Bernstein condition:

$$\mathbb{E}(f(w) - f(u^*))^2 \le B(\mathbb{E}[f(w) - f(u^*)])^{\beta}$$
 for all $w \in \mathcal{U}$.

Replace by weaker linearized version:

- Apply with $\tilde{f}(u) = \langle u, \nabla f(w) \rangle$ instead of f!
- ▶ By convexity, $f(w) f(u^*) \le \tilde{f}(w) \tilde{f}(u^*)$.

$$\mathbb{E}\left((\boldsymbol{w}-\boldsymbol{u}^*)\nabla f(\boldsymbol{w})\right)^2 \leq B\big(\mathbb{E}\left[(\boldsymbol{w}-\boldsymbol{u}^*)\nabla f(\boldsymbol{w})\right]\big)^{eta} \qquad ext{for all } \boldsymbol{w} \in \mathcal{U}.$$

Suppose f_t i.i.d. with stochastic optimum $u^* = \arg\min_{u \in \mathcal{U}} \mathbb{E}[f(u)]$.

Standard Bernstein condition:

$$\mathbb{E}(f(w) - f(u^*))^2 \le B(\mathbb{E}[f(w) - f(u^*)])^{\beta}$$
 for all $w \in \mathcal{U}$.

Replace by weaker linearized version:

- Apply with $\tilde{f}(u) = \langle u, \nabla f(w) \rangle$ instead of f!
- ▶ By convexity, $f(w) f(u^*) \le \tilde{f}(w) \tilde{f}(u^*)$.

$$\mathbb{E}\left((\boldsymbol{w}-\boldsymbol{u}^*)\nabla f(\boldsymbol{w})\right)^2 \leq B\big(\mathbb{E}\left[(\boldsymbol{w}-\boldsymbol{u}^*)\nabla f(\boldsymbol{w})\right]\big)^{eta} \qquad ext{for all } \boldsymbol{w} \in \mathcal{U}.$$

Hinge loss (with
$$G = D = 1$$
): $\beta = 1$, $B = \frac{2\lambda_{\text{max}}(\mathbb{E}[XX^{\intercal}])}{\|\mathbb{E}[YX]\|}$

Suppose f_t i.i.d. with stochastic optimum $oldsymbol{u}^* = rg \min_{oldsymbol{u} \in \mathcal{U}} \mathbb{E}[f(oldsymbol{u})].$

Standard Bernstein condition:

$$\mathbb{E}(f(w) - f(u^*))^2 \le B(\mathbb{E}[f(w) - f(u^*)])^{\beta}$$
 for all $w \in \mathcal{U}$.

Replace by weaker linearized version:

- Apply with $\tilde{f}(u) = \langle u, \nabla f(w) \rangle$ instead of f!
- ▶ By convexity, $f(w) f(u^*) \le \tilde{f}(w) \tilde{f}(u^*)$.

$$\mathbb{E}\left((\boldsymbol{w}-\boldsymbol{u}^*)\nabla f(\boldsymbol{w})\right)^2 \leq B\big(\mathbb{E}\left[(\boldsymbol{w}-\boldsymbol{u}^*)\nabla f(\boldsymbol{w})\right]\big)^{eta} \qquad ext{for all } \boldsymbol{w} \in \mathcal{U}.$$

Hinge loss (with
$$G = D = 1$$
): $\beta = 1$, $B = \frac{2\lambda_{\max}(\mathbb{E}[XX^{\intercal}])}{\|\mathbb{E}[YX]\|}$

Theorem (Koolen, Grünwald, Van Erven, 2016)

$$\begin{split} \mathbb{E}[\mathsf{Regret}_T^{u^*}] &= O\Big(\left(Bd\ln T\right)^{1/(2-\beta)} \, T^{(1-\beta)/(2-\beta)}\Big) \\ \mathsf{Regret}_T^{u^*} &= O\Big(\left(Bd\ln T - \ln \delta\right)^{1/(2-\beta)} \, T^{(1-\beta)/(2-\beta)}\Big) \quad \textit{w.p.} \geq 1-\delta \end{split}$$

Difference in Rates Not Just Theoretical

- ▶ MetaGrad: $O(\ln T)$ regret, AdaGrad: $O(\sqrt{T})$, match bounds
- Functions neither strongly convex nor smooth
- ► Caveat: comparison more complicated for higher dimensions, unless we run a separate copy of MetaGrad per dimension, like the diagonal version of AdaGrad runs GD per dimension

Outline

Two General Fast Rate Conditions

MetaGrad Algorithm

Exponential Weights Interpretation of Online Learning Algorithms

Second-order surrogate loss for each η of interest (from a grid):

$$\ell_t^{\eta}(u) = \eta(u-w_t)^{\intercal} g_t + \eta^2 (u-w_t)^{\intercal} g_t g_t^{\intercal} (u-w_t)$$

Second-order surrogate loss for each η of interest (from a grid):

$$\ell_t^{\eta}(u) = \eta(u-w_t)^{\intercal} g_t + \eta^2 (u-w_t)^{\intercal} g_t g_t^{\intercal} (u-w_t)$$

One Slave algorithm per η produces w_t^{η} such that

$$\sum_{t=1}^{I} \ell_t^{\eta}(\boldsymbol{w}_t^{\eta}) - \sum_{t=1}^{I} \ell_t^{\eta}(\boldsymbol{u}) \leq R_{\mathsf{slave}}^{\boldsymbol{u}}(\eta)$$

Second-order surrogate loss for each η of interest (from a grid):

$$\ell_t^{\eta}(u) = \eta(u-w_t)^{\intercal} g_t + \eta^2 (u-w_t)^{\intercal} g_t g_t^{\intercal} (u-w_t)$$

One Slave algorithm per η produces $\boldsymbol{w}_{t}^{\eta}$ such that

$$\sum_{t=1}^{T} \ell_t^{\eta}(\boldsymbol{w}_t^{\eta}) - \sum_{t=1}^{T} \ell_t^{\eta}(\boldsymbol{u}) \leq R_{\mathsf{slave}}^{\boldsymbol{u}}(\eta)$$

$$\underbrace{\sum_{t=1}^{T} \ell_t^{\eta}(\boldsymbol{w}_t) - \sum_{t=1}^{T} \ell_t^{\eta}(\boldsymbol{w}_t^{\eta}) \leq R_{\mathsf{master}}(\eta)}_{\mathsf{-0}} \quad \forall \eta$$

Second-order surrogate loss for each η of interest (from a grid):

$$\ell_t^{\eta}(u) = \eta(u-w_t)^{\intercal} g_t + \eta^2 (u-w_t)^{\intercal} g_t g_t^{\intercal} (u-w_t)$$

One Slave algorithm per η produces $oldsymbol{w}_t^{\eta}$ such that

$$\sum_{t=1}^T \ell_t^{\eta}(\boldsymbol{w}_t^{\eta}) - \sum_{t=1}^T \ell_t^{\eta}(\boldsymbol{u}) \leq R_{\mathsf{slave}}^{\boldsymbol{u}}(\eta)$$

$$\underbrace{\sum_{t=1}^{T} \ell_t^{\eta}(\boldsymbol{w}_t) - \sum_{t=1}^{T} \ell_t^{\eta}(\boldsymbol{w}_t^{\eta}) \leq R_{\mathsf{master}}(\eta)}_{\mathsf{q}} \quad \forall \eta$$

Together:
$$-\sum_{t=1}^{T} \ell_t^{\eta}(u) \le R_{\mathsf{slave}}^{u}(\eta) + R_{\mathsf{master}}(\eta) \quad \forall \eta$$

Second-order surrogate loss for each η of interest (from a grid):

$$\ell_t^{\eta}(u) = \eta(u-w_t)^{\intercal} g_t + \eta^2 (u-w_t)^{\intercal} g_t g_t^{\intercal} (u-w_t)$$

One Slave algorithm per η produces w_t^{η} such that

$$\sum_{t=1}^T \ell_t^{\eta}(\boldsymbol{w}_t^{\eta}) - \sum_{t=1}^T \ell_t^{\eta}(\boldsymbol{u}) \leq R_{\mathsf{slave}}^{\boldsymbol{u}}(\eta)$$

$$\sum_{t=1}^{T} \ell_t^{\eta}(w_t) - \sum_{t=1}^{T} \ell_t^{\eta}(w_t^{\eta}) \le R_{\mathsf{master}}(\eta) \qquad orall \eta$$

Together:
$$-\sum_{t=1}^{T} \ell_t^{\eta}(u) \le R_{\mathsf{slave}}^{u}(\eta) + R_{\mathsf{master}}(\eta) \quad \forall \eta$$

$$\sum_{t=1}^T (\boldsymbol{w}_t - \boldsymbol{u})^\intercal \boldsymbol{g}_t \leq \frac{R_{\mathsf{slave}}^{\boldsymbol{u}}(\eta) + R_{\mathsf{master}}(\eta)}{\eta} + \eta \boldsymbol{V}_T^{\boldsymbol{u}}$$

Second-order surrogate loss for each η of interest (from a grid):

$$\ell_t^{\eta}(u) = \eta(u-w_t)^{\intercal} g_t + \eta^2 (u-w_t)^{\intercal} g_t g_t^{\intercal} (u-w_t)$$

One Slave algorithm per η produces \boldsymbol{w}_t^{η} such that

$$\sum_{t=1}^{T} \ell_t^{\eta}(\boldsymbol{w}_t^{\eta}) - \sum_{t=1}^{T} \ell_t^{\eta}(\boldsymbol{u}) \leq R_{\mathsf{slave}}^{\boldsymbol{u}}(\eta)$$

$$\underbrace{\sum_{t=1}^{T} \ell_t^{\eta}(\boldsymbol{w}_t) - \sum_{t=1}^{T} \ell_t^{\eta}(\boldsymbol{w}_t^{\eta}) \leq R_{\mathsf{master}}(\eta)}_{=0} \quad \forall \eta$$

Together:
$$-\sum_{t=1}^{T} \ell_t^{\eta}(u) \le R_{\mathsf{slave}}^{u}(\eta) + R_{\mathsf{master}}(\eta) \quad \forall \eta$$

$$\sum_{t=1}^{T} (oldsymbol{w}_t - oldsymbol{u})^\intercal oldsymbol{g}_t \leq rac{O(d \ln T) + O(\ln \ln T)}{\eta} + \eta V_T^{oldsymbol{u}}$$

Second-order surrogate loss for each η of interest (from a grid):

$$\ell_t^{\eta}(u) = \eta(u-w_t)^{\intercal} g_t + \eta^2 (u-w_t)^{\intercal} g_t g_t^{\intercal} (u-w_t)$$

One Slave algorithm per η produces $oldsymbol{w}_t^{\eta}$ such that

$$\sum_{t=1}^{T} \ell_t^{\eta}(\boldsymbol{w}_t^{\eta}) - \sum_{t=1}^{T} \ell_t^{\eta}(\boldsymbol{u}) \leq R_{\mathsf{slave}}^{\boldsymbol{u}}(\eta)$$

$$\underbrace{\sum_{t=1}^{T} \ell_t^{\eta}(\boldsymbol{w}_t) - \sum_{t=1}^{T} \ell_t^{\eta}(\boldsymbol{w}_t^{\eta}) \leq R_{\mathsf{master}}(\eta)}_{\mathsf{position}} \quad \forall \eta$$

Together:
$$-\sum_{t=1}^{T} \ell_t^{\eta}(u) \leq R_{\text{slave}}^{u}(\eta) + R_{\text{master}}(\eta) \quad \forall \eta$$

$$\sum_{t=1}^T (\boldsymbol{w}_t - \boldsymbol{u})^{\intercal} \boldsymbol{g}_t \leq \frac{O(d \ln T) + O(\ln \ln T)}{\eta} + \eta \boldsymbol{V}_T^{\boldsymbol{u}} \Rightarrow O\left(\sqrt{\boldsymbol{V}_T^{\boldsymbol{u}} d \ln T}\right)$$

MetaGrad Master

Goal: aggregate slave predictions \boldsymbol{w}_t^{η} for all η in exponentially spaced grid $\frac{2^{-0}}{5DG}, \frac{2^{-1}}{5DG}, \dots, \frac{2^{-\lceil \frac{1}{2} \log_2 T \rceil}}{5DG}$

Difficulty: master's predictions must be good w.r.t. different loss functions ℓ^{η}_{τ} for all η simultaneously

Compute **exponential weights** with performance of each η measured by its own surrogate loss:

$$\pi_t(\eta) = \frac{\pi_1(\eta)e^{-\sum_{s < t} \ell_s^{\eta}(w_s^{\eta})}}{Z}$$

Then predict with **tilted** exponentially weighted average:

$$oldsymbol{w}_t = rac{\sum_{\eta} \pi_t(\eta) rac{\eta}{\eta} oldsymbol{w}_t^{\eta}}{\sum_{\eta} \pi_t(\eta) rac{\eta}{\eta}}$$

MetaGrad Master Analysis

Potential

$$\Phi_{\mathcal{T}} = \sum_{m} \pi_1(\eta) e^{-\sum_{t=1}^{\mathcal{T}} \ell_t^{\eta}(\boldsymbol{w}_t^{\eta})}$$

Proof outline:

$$\Phi_T \leq \Phi_{T-1} \leq \cdots \leq \Phi_0 = 1$$

$$\pi_1(\eta)e^{-\sum_{t=1}^T \ell_t^{\eta}(\boldsymbol{w}_t^{\eta})} \leq 1$$

$$\sum_{t=1}^T \ell_t^{\eta}(\boldsymbol{w}_t) - \sum_{t=1}^T \ell_t^{\eta}(\boldsymbol{w}_t^{\eta}) \leq -\ln \pi_1(\eta)$$

MetaGrad Master Analysis

$$\Phi_T = \sum \pi_1(\eta) e^{-\sum_{t=1}^T \ell_t^{\eta}(\boldsymbol{w}_t^{\eta})}$$

Proof outline:

$$\begin{aligned} \Phi_{\mathcal{T}} & \leq \Phi_{\mathcal{T}-1} \leq \cdots \leq \Phi_0 = 1 \\ \pi_1(\eta) e^{-\sum_{t=1}^T \ell_t^{\eta}(\boldsymbol{w}_t^{\eta})} \leq 1 & \forall \eta \\ \sum_{t=1}^T \ell_t^{\eta}(\boldsymbol{w}_t) - \sum_{t=1}^T \ell_t^{\eta}(\boldsymbol{w}_t^{\eta}) \leq -\ln \pi_1(\eta) \end{aligned}$$

Grid has $\lceil \frac{1}{2} \log_2 T \rceil + 1$ learning rates, so for heavy-tailed prior:

$$-\ln \pi_1(\eta) = O(\ln \ln T)$$

MetaGrad Master Analysis: Decreasing Potential

Surrogate loss $\ell_t^{\eta}(u) = \eta(u - w_t)^{\mathsf{T}} g_t + \eta^2 (u - w_t)^{\mathsf{T}} g_t g_t^{\mathsf{T}} (u - w_t)$ is **exp-concave**, even if f_t is not.

Upper bound by tangent at $u = w_t$:

$$e^{-\ell_t^{\eta}(oldsymbol{u})} \leq 1 + \eta(oldsymbol{w}_t - oldsymbol{u})^{\intercal} oldsymbol{g}_t$$

MetaGrad Master Analysis: Decreasing Potential

Surrogate loss $\ell_t^{\eta}(u) = \eta(u - w_t)^{\mathsf{T}} g_t + \eta^2 (u - w_t)^{\mathsf{T}} g_t g_t^{\mathsf{T}} (u - w_t)$ is **exp-concave**, even if f_t is not.

Upper bound by tangent at $u = w_t$:

$$e^{-\ell_t^{\eta}(oldsymbol{u})} \leq 1 + \eta(oldsymbol{w}_t - oldsymbol{u})^\intercal oldsymbol{g}_t$$

Choose master's weights to ensure decreasing potential:

$$egin{aligned} \Phi_{\mathcal{T}} - \Phi_{\mathcal{T}-1} &= \sum_{\eta} \pi_1(\eta) e^{-\sum_{t < \mathcal{T}} \ell_t^{\eta}(oldsymbol{w}_t^{\eta})} \left(e^{-\ell_{\mathcal{T}}^{\eta}(oldsymbol{w}_{\mathcal{T}}^{\eta})} - 1
ight) \ &\leq \sum_{\eta} \pi_1(\eta) e^{-\sum_{t < \mathcal{T}} \ell_t^{\eta}(oldsymbol{w}_t^{\eta})} \eta(oldsymbol{w}_{\mathcal{T}} - oldsymbol{w}_{\mathcal{T}}^{\eta})^{\intercal} oldsymbol{g}_{\mathcal{T}} \ &= 0 \qquad ext{for any } oldsymbol{g}_{\mathcal{T}} \end{aligned}$$

MetaGrad Slave

Goal: Given η , minimize regret w.r.t. exp-concave surrogate ℓ_t^{η} . Update:

$$ilde{oldsymbol{w}}_{t+1}^{\eta} = oldsymbol{w}_t^{\eta} - \eta oldsymbol{s}_t^{\eta} oldsymbol{\Sigma}_{t+1}^{\eta} oldsymbol{g}_t,$$

where

$$\Sigma_{t+1}^{\eta} = \left(rac{1}{D^2}oldsymbol{I} + 2\eta^2\sum_{s=1}^t oldsymbol{g}_soldsymbol{g}_s^{\intercal}
ight)^{-1} \quad s_t^{\eta} = 1 + 2\eta oldsymbol{g}_t^{\intercal}(oldsymbol{w}_t^{\eta} - oldsymbol{w}_t)$$

Project onto domain:

$$\boldsymbol{w}_{t+1}^{\eta} = \operatorname*{arg\,min}_{\boldsymbol{u} \in \mathcal{U}} \ (\boldsymbol{u} - \tilde{\boldsymbol{w}}_{t+1}^{\eta})^{\mathsf{T}} (\boldsymbol{\Sigma}_{t+1}^{\eta})^{-1} (\boldsymbol{u} - \tilde{\boldsymbol{w}}_{t+1}^{\eta})$$

MetaGrad Slave

Goal: Given η , minimize regret w.r.t. exp-concave surrogate ℓ_t^{η} . Update:

$$\tilde{\boldsymbol{w}}_{t+1}^{\eta} = \boldsymbol{w}_{t}^{\eta} - \eta \boldsymbol{s}_{t}^{\eta} \boldsymbol{\Sigma}_{t+1}^{\eta} \boldsymbol{g}_{t},$$

where

$$\Sigma_{t+1}^{\eta} = \left(\frac{1}{D^2}\boldsymbol{I} + 2\eta^2 \sum_{s=1}^{t} \boldsymbol{g}_s \boldsymbol{g}_s^{\mathsf{T}}\right)^{-1} \quad \boldsymbol{s}_t^{\eta} = 1 + 2\eta \boldsymbol{g}_t^{\mathsf{T}} (\boldsymbol{w}_t^{\eta} - \boldsymbol{w}_t)$$

Project onto domain:

$$\boldsymbol{w}_{t+1}^{\eta} = \operatorname*{arg\,min}_{\boldsymbol{u} \in \mathcal{U}} \ (\boldsymbol{u} - \tilde{\boldsymbol{w}}_{t+1}^{\eta})^{\mathsf{T}} (\boldsymbol{\Sigma}_{t+1}^{\eta})^{-1} (\boldsymbol{u} - \tilde{\boldsymbol{w}}_{t+1}^{\eta})$$

▶ If master = slave, i.e. $w_t^{\eta} = w_t$, then is Online Newton Step

MetaGrad Slave as Continuous Exponential Weights

Exponential Weights

- $lackbox{\sf Continuous}$ set of experts $u \in \mathbb{R}^d$
- Gaussian prior $P_1 = \mathcal{N}(\mathbf{0}, D^2 \mathbf{I})$

$$\mathrm{d} ilde{P}_{t+1}(u) = rac{\mathrm{e}^{-\ell_t^{\eta}(u)}\mathrm{d}P_t(u)}{Z}$$
 (update)
 $P_{t+1} = \min_{P \colon \mu_P \in \mathcal{U}} \mathsf{KL}(P \| ilde{P}_{t+1})$ (project)

Play the mean of exponential weights:

$$egin{aligned} ilde{\mathcal{P}}_t &= \mathcal{N}(ilde{oldsymbol{w}}_t^{\eta}, \Sigma_t^{\eta}) \ \mathcal{P}_t &= \mathcal{N}(oldsymbol{w}_t^{\eta}, \Sigma_t^{\eta}) \end{aligned}$$

 Can understand Online Newton Step and many other algorithms this way

MetaGrad Slave Analysis

Standard exponential weights analysis gives regret bound in space of distributions for all *Q*:

$$\mathsf{KL}(Q \| P_1) \geq \sum_{t=1}^T - \mathsf{In} \mathop{\mathbb{E}}_{P_t}[e^{-\ell_t^\eta(oldsymbol{u})}] - \sum_{t=1}^T \mathop{\mathbb{E}}_{Q}[\ell_t^\eta(oldsymbol{u})] \ \stackrel{oldsymbol{exp-conc}}{\geq} \sum_{t=1}^T \ell_t^\eta(oldsymbol{\mu}_{P_t}) - \sum_{t=1}^T \mathop{\mathbb{E}}_{Q}[\ell_t^\eta(oldsymbol{u})]$$

MetaGrad Slave Analysis

Standard exponential weights analysis gives regret bound in space of distributions for all *Q*:

$$\mathsf{KL}(Q \| P_1) \geq \sum_{t=1}^{T} - \mathsf{In} \mathop{\mathbb{E}}_{P_t}[e^{-\ell_t^{\eta}(oldsymbol{u})}] - \sum_{t=1}^{T} \mathop{\mathbb{E}}_{Q}[\ell_t^{\eta}(oldsymbol{u})]$$
 $\stackrel{exp-conc}{\geq} \sum_{t=1}^{T} \ell_t^{\eta}(oldsymbol{\mu}_{P_t}) - \sum_{t=1}^{T} \mathop{\mathbb{E}}_{Q}[\ell_t^{\eta}(oldsymbol{u})]$

Specialize to $Q = \mathcal{N}(u^*, D^2\Sigma) + \text{algebra}$:

$$\begin{split} &\frac{1}{2D^2}\|\boldsymbol{u}^*\|^2 + \frac{1}{2}\left(-\ln\det(\Sigma) + \operatorname{tr}(\Sigma) - d\right) \\ &\geq \sum_{t=0}^{T} \ell_t^{\eta}(\boldsymbol{\mu}_{P_t}) - \sum_{t=0}^{T} \ell_t^{\eta}(\boldsymbol{u}^*) - \sum_{t=0}^{T} \eta^2 D^2 \operatorname{tr}(\Sigma \boldsymbol{g}_t \boldsymbol{g}_t^{\mathsf{T}}) \end{split}$$

MetaGrad Slave Analysis

Standard exponential weights analysis gives regret bound in space of distributions for all *Q*:

$$\mathsf{KL}(Q \| P_1) \geq \sum_{t=1}^{I} - \mathsf{In} \mathop{\mathbb{E}}_{P_t}[e^{-\ell_t^{\eta}(oldsymbol{u})}] - \sum_{t=1}^{I} \mathop{\mathbb{E}}_{Q}[\ell_t^{\eta}(oldsymbol{u})]$$
 $\stackrel{\mathsf{exp-conc}}{\geq} \sum_{t=1}^{T} \ell_t^{\eta}(oldsymbol{\mu}_{P_t}) - \sum_{t=1}^{T} \mathop{\mathbb{E}}_{Q}[\ell_t^{\eta}(oldsymbol{u})]$

Specialize to $Q = \mathcal{N}(u^*, D^2\Sigma) + \text{algebra}$:

$$\begin{split} &\frac{1}{2D^2}\|\boldsymbol{u}^*\|^2 + \frac{1}{2}\left(-\ln\det(\Sigma) + \operatorname{tr}(\Sigma) - d\right) \\ &\geq \sum^T \ell_t^{\eta}(\boldsymbol{\mu}_{P_t}) - \sum^T \ell_t^{\eta}(\boldsymbol{u}^*) - \sum^T \eta^2 D^2 \operatorname{tr}(\Sigma \boldsymbol{g}_t \boldsymbol{g}_t^{\mathsf{T}}) \end{split}$$

Optimize Σ :

$$R_{\mathsf{slave}}^{oldsymbol{u}}(\eta) \leq rac{1}{2D^2} \|oldsymbol{u}^*\| + rac{1}{2} \ln \det \left(oldsymbol{I} + 2\eta^2 D^2 \sum_{t=1}^{I} oldsymbol{g}_t oldsymbol{g}_t^\mathsf{T}
ight) = O(d \ln T)$$

Outline

Two General Fast Rate Conditions

MetaGrad Algorithm

Exponential Weights Interpretation of Online Learning Algorithms

Many Algorithms as Exponential Weights

Exponentiated Gradient [Kivinen and Warmuth, 1997]

- $lackbox{ Continuous set of experts } oldsymbol{u} \in \mathbb{R}^d ext{ with loss } \ell_t(oldsymbol{u}) = \langle oldsymbol{u}, oldsymbol{g}_t
 angle$
- \triangleright Prior P_1 puts point masses on corners of probability simplex

$$\mathrm{d}P_{t+1}(u) = rac{\mathrm{e}^{-\eta \ell_t(u)} \mathrm{d}P_t(u)}{Z} \qquad \Longrightarrow \qquad \mathop{\mathbb{E}}_{P_{t+1}}[u] = P_{t+1} = \mathsf{E}\mathsf{G}$$

Many Algorithms as Exponential Weights

Exponentiated Gradient [Kivinen and Warmuth, 1997]

- $lackbox{ Continuous set of experts } oldsymbol{u} \in \mathbb{R}^d ext{ with loss } \ell_t(oldsymbol{u}) = \langle oldsymbol{u}, oldsymbol{g}_t
 angle$
- \triangleright Prior P_1 puts point masses on corners of probability simplex

$$\mathrm{d}P_{t+1}(u) = rac{\mathrm{e}^{-\eta \ell_t(u)} \mathrm{d}P_t(u)}{Z} \qquad \Longrightarrow \qquad \mathop{\mathbb{E}}_{P_{t+1}}[u] = P_{t+1} = \mathsf{E}\mathsf{G}$$

Gradient Descent

Gaussian prior
$$P_1 = \mathcal{N}(\mathbf{0}, I) \implies P_{t+1}(u) = \mathcal{N}(-\eta \sum_{t=1}^T g_t, I)$$

Many Algorithms as Exponential Weights

Exponentiated Gradient [Kivinen and Warmuth, 1997]

- lacksquare Continuous set of experts $m{u} \in \mathbb{R}^d$ with loss $\ell_t(m{u}) = \langle m{u}, m{g}_t
 angle$
- ightharpoonup Prior P_1 puts point masses on corners of probability simplex

$$\mathrm{d}P_{t+1}(u) = rac{\mathrm{e}^{-\eta\ell_t(u)}\mathrm{d}P_t(u)}{Z} \qquad \Longrightarrow \qquad \mathop{\mathbb{E}}_{P_{t+1}}[u] = P_{t+1} = \mathsf{E}\mathsf{G}$$

Gradient Descent

Gaussian prior
$$P_1 = \mathcal{N}(\mathbf{0}, I) \implies P_{t+1}(u) = \mathcal{N}(-\eta \sum_{t=1}^{r} g_t, I)$$

Mirror Descent [Van der Hoeven, 2016]

- Generalize to arbitrary prior P₁
- ▶ $Φ(θ) = ln ∫ e^{\langle θ, u \rangle} dP_1(u)$: CGF for exponential family with carrier P_1

Dirk

Summary and Last Remarks

MetaGrad

- $ightharpoonup \tilde{O}(\sqrt{T})$ regret
- ▶ Fast rates (often O(d In T)) for:
 - ► Adversarial: exp-concave, strongly convex, fixed functions
 - ► Stochastic: under Bernstein condition (including for hinge loss)

Summary and Last Remarks

MetaGrad

- $ightharpoonup \tilde{O}(\sqrt{T})$ regret
- ► Fast rates (often $O(d \ln T)$) for:
 - Adversarial: exp-concave, strongly convex, fixed functions
 - ▶ Stochastic: under Bernstein condition (including for hinge loss)

MetaGrad Algorithm

- Master:
 - ▶ Pays only $O(\ln \ln T)$ for learning the η that is empirically optimal on the data
 - Almost exponential weights for surrogate loss, but need to tilt towards larger learning rates
- Slave:
 - Continuous exponential weights on surrogate loss
 - ▶ Matrix updates take $O(d^2)$ work, projections often $O(d^3)$
 - Open problem: add sketching like [Luo et al., 2016]?

Summary and Last Remarks

MetaGrad

- $ightharpoonup \tilde{O}(\sqrt{T})$ regret
- ► Fast rates (often $O(d \ln T)$) for:
 - Adversarial: exp-concave, strongly convex, fixed functions
 - ► Stochastic: under Bernstein condition (including for hinge loss)

MetaGrad Algorithm

- Master:
 - Pays only $O(\ln \ln T)$ for learning the η that is empirically optimal on the data
 - Almost exponential weights for surrogate loss, but need to tilt towards larger learning rates
- Slave:
 - Continuous exponential weights on surrogate loss
 - ▶ Matrix updates take $O(d^2)$ work, projections often $O(d^3)$
 - Open problem: add sketching like [Luo et al., 2016]?

Cool Aside: View many online algorithms as continuous exponential weights

References

- P. L. Bartlett, E. Hazan, and A. Rakhlin. Adaptive online gradient descent. In NIPS 20, pages 65-72, 2007.
- C.-K. Chiang, T. Yang, C.-J. Le, M. Mahdavi, C.-J. Lu, R. Jin, and S. Zhu. Online optimization with gradual variations. In Proc. of the 25th Annual Conf. on Learning Theory (COLT), pages 6.1–6.20, 2012.
- C. B. Do, Q. V. Le, and C.-S. Foo. Proximal regularization for online and batch learning. In Proc. of the 26th Annual International Conf. on Machine Learning (ICML), pages 257–264, 2009.
- J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.
- E. Hazan and S. Kale. Extracting certainty from uncertainty: Regret bounded by variation in costs. Machine learning, 80(2-3):165–188, 2010.
- E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex optimization. *Machine Learning*, 69(2-3):169–192, 2007.
- J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors. Information and Computation, 132(1):1–63, 1997.
- W. M. Koolen, P. Grünwald, and T. van Erven. Combining adversarial guarantees and stochastic fast rates in online learning. NIPS, 2016.
- H. Luo, A. Agarwal, N. Cesa-Bianchi, and J. Langford. Efficient second order online learning by sketching. In NIPS 29, 2016.
- F. Orabona. Simultaneous model selection and optimization through parameter-free stochastic learning. In NIPS 27, pages 1116–1124, 2014.
- F. Orabona and D. Pál. Coin betting and parameter-free online learning. In NIPS 29, 2016.
- F. Orabona, K. Crammer, and N. Cesa-Bianchi. A generalized online mirror descent with applications to classification and regression. *Machine Learning*, 99(3):411–435, 2015.
- D. van der Hoeven. Is mirror descent a special case of exponential weights? Master's thesis, Leiden University, 2016. Available from https://www.math.leidenuniv.nl/en/theses/year/2016/.
- T. van Erven and W. M. Koolen. Metagrad: Multiple learning rates in online learning. NIPS, 2016.